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Block Runge-Kutta Methods for the 
Numerical Integration of Initial Value Problems 

in Ordinary Differential Equations 
Part II. The Stiff Case 

By J. R. Cash 

Abstract. The approach described in the first part of this paper is extended to include 
diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for 
the numerical integration of stiff differential systems, and their efficiency is illustrated by 
means of some numerical examples. 

1. Introduction. In a recent paper [2], Cash and Bond have derived a class of block 
cyclic integration formulae suitable for the numerical integration of the stiff dif- 
ferential system 

(1.1) dy = f(X ) y(x0) =yo, y ERS 

These formulae were derived and analyzed as block implicit linear multistep meth- 
ods. However, a much more convenient way of investigating them is to consider 
them as block diagonally implicit Runge-Kutta formulae. In the second part of this 
paper we extend the analysis presented in Part I to derive a new class of block 
DIRK formulae. These formulae have the implicitness necessary for the efficient 
solution of stiff differential systems but do not call for the large computational effort 
normally required by fully implicit Runge-Kutta formulae. This new, much more 
general, approach allows us to derive formulae with many advantages over the 
formulae derived in [2] and among these advantages are: 

(1) Better accuracy. 
(2) Better stability. 
(3) A better algorithm for estimating the local truncation error and hence for 

adjusting the step length of integration and varying the order of the formula being 
used. 

The better accuracy and stability comes from the fact that, by writing our 
formulae as block DIRK methods, we have numerous free parameters at our 
disposal and these can be used to advantage. The better order and step changing 
algorithms result from the fact that, although the error estimation procedures given 
in [2] generally perform well in practice, they are not asymptotically correct in the 
sense that they do not necessarily yield the correct error estimate in the limit h = 0. 
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Furthermore, there are classes of problems for which the error estimates given in [2] 
perform very poorly [11]. A direct extension of the error estimation algorithm given 
in Part I of this paper is inappropriate since this in effect gives an error estimate per 
unit step, and our numerical experience with block methods indicates that this is not 
the best way to control the error when integrating stiff differential systems. Instead 
we will present a different error estimation algorithm which is asymptotically correct 
as h -- 0 and which has been found to perform well in practice. A different way of 
building up the block will also be described, and this has been found to be much 
more efficient than that described in [2]. 

2. The General Approach. In this section we describe our general approach to the 
problem of deriving efficient block diagonally implicit Runge-Kutta formulae. 
DIRK formulae were first proposed by N0rsett [14] and have more recently been 
investigated and extended by Alexander [1], Crouzieux [7] and Cash [5]. The idea of 
using Runge-Kutta formulae in a block form is an old one-going back at least as 
far as Milne [13] and more recently developed in the implicit case by Shampine and 
Watts [16], Williams and de Hoog [17] and Gear [8]. However, investigations of 
implicit block integration formulae have been based on fully implicit Runge-Kutta 
formulae, and an investigation of the potentially more efficient class of block DIRK 
formulae has not been considered. In part this is due to the fact that block formulae 
are sometimes only proposed as starting procedures for high order linear multistep 
methods [8]. As we shall see later, DIRK formulae lend themselves naturally to 
efficient implementation in block form and have several computational advantages 
over other Runge-Kutta formulae for the integration of stiff differential systems. 

As the starting point of our analysis we consider the second order implicit 
integration formula given in [2] 

(2. .1) Yn(li = Yn(I+i- I + hf (Xn+i , Yn(I+i) I i 2, Yn( l )Yn 

Yn+ i =Yn +i- I + hf (Xn +i I Yn+ i)-2 Y\h Yn(l I ) i= 2 3 n)-Y 

where AhYn(l)=_Yn(+1I yn(l) and where we assume that the solution has already been 
computed up to and including the point (xn, Yn). Our first step is to express this 
formula as a Runge-Kutta method of the general form 

q q 

(2*2) yn +I -yn= h :E bi ki, kj=f Xn +cih, Yn + h 2 aijkj, 1 < i <q. 
i=1 j=1 

A particularly convenient way of expressing our Runge-Kutta formula is to use the 
well-known "Butcher Matrix" notation whereby (2.2) is represented in the form 

(2.3) c A 
bT 
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Here A is the q X q matrix a and b, c are vectors of dimension q. Using this 
notation we can write formula (2.1) for the computation of y,(23 as 

1 1 
2 1 1 

(2.4) 2 1/2 -1/2 1 

3 3/2 -3/2 1 1 1 

3/2 -3/2 1 1 1 

see also [6, p. 1 15]. This formula has the important property that as well as providing 
a second order solution at xn+3 it also provides both first and second order solutions 
at xn+Il and xn+2' In addition, if (2.4) is expressed in the more general form 

1 all 
2 a21 a22 

(2.5) 1 a31 a32 a33 
2 a41 a42 a43 a44 
3 a51 a52 a53 a54 a55 

a51 a52 a53 a54 a55 

the formula used to computeyn(j)i,,j E [1, 2], i E [1, 2] and; j = 2, i = 3 is 

2(j- 1)+i 

(2.6) yn(y)i =yn + h 2 a2(frl)+i,mkm 
m=1 

Thus, for example, the formulae used to compute Yn(+1 Yn(+12, + ) y2, 3 are 
respectively 

111 11 1 1 1 1 
12 1 2 1 1 2 1 1 

1 1 1 1/2 -1/2 1 1 1/2 -1/2 1 and (2.4) 

1/2 -1/2 1 2 1 -1 1 1 
1 -1 1 1 

We see that our five stage block formula (2.4) provides 5 separate solutions and, as 
will be seen later, this rule generalizes in that our general m-stage formula yields m 
separate solutions. 

Our aim now is to generalize formula (2.4) to (2.5) and to choose the extra free 
parameters at our disposal so as to improve the computational efficiency of our 
method. This is not entirely straightforward because formula (2.4) has proved to be 
remarkably efficient. What we need to do is to isolate the precise reasons for this 
efficiency and then to make sure that (2.5) also shares these properties. The main 
reasons for the efficiency of (2.4) are: 

(1) At each step we solve for a yn(j)i value rather than for an "f value". This 
property, which is also shared by some other implicit Runge-Kutta formulae, makes 
the process of prediction much simpler, and also we are able to use many of the well 
tried devices incorporated by Hindmarsh [9] in his version of GEAR. In particular, 
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when computing y,(2+ 1, y,(2) we already have the (normally very good) approxima- 
tions Y,,(i' Yn(+2 available and, furthermore, we have a built-in local error estimate 
y(2)i-( vial fr err iw 

Yn2+i-yn,(+i available for the error in y 1, 2. This is highlighted if we consider 
the first three steps of (2.1) which are 

Y,n(+ y,=Y + hf( xn+2 , yn(+) 

Yn(+l =2Yn(+l I + hf ( Xn +2 S Yn(+2l) 2 

,2i yyn? f(2?1 Y7I) - 
I 

- 2 yn,lI ?yn) Yn+ I=Yn + hf (Xn+ I I Y(+ 1)2 ( Yn(+l)2-Y(I + Y 

We see that when computing yn(2+1 we already have the iterate Yn(lI available and, 
furthermore, f(xn +I Yn(,l) will also be available. Thus the computation of y,(1 is 
normally very cheap. Our numerical experience has shown that the five-stage block 
formula (2.4) generally requires considerably less computational effort than is 
required by a conventional five-stage DIRK formula. Also formula (2.4) obtains 
second order accuracy at three grid points using 5 stages, whereas, for Alexander's 
second order formula, to obtain comparable accuracy at the same three grid points, 
6 stages are required. Furthermore, for reasons just explained, the computation 
required to use (2.4) is normally much less than it would be for Alexander's or 
similar schemes (see also the results of Section 6). Finally, we remark that all 
formulae in this paper require less function evaluations per step than are required by 
conventional DIRK formulae of the same order to achieve comparable accuracy. 
This leads us to make the important point that, although in the explicit case we can 
normally compare the efficiency of two (nonblock) Runge-Kutta formulae of the 
same order by counting the number of stages, in the case of implicit Runge-Kutta 
formulae such a comparison may not be valid. Indeed, when comparing block DIRK 
formulae with conventional DIRK formulae such a criterion is almost invariably of 
little value since stages in block formulae normally require much less computational 
effort than stages in conventional DIRK formulae. The other properties we require, 
and these are shared by some other implicit Runge-Kutta formulae, are: 

(2) Our formulae are strongly S-stable [15]. 
(3) Our formulae simultaneously produce approximations at a sequence of points. 

In general we require that our pth order formulae should produce pth order 
solutions at p + 1 equally spaced points. 

(4) The coefficient matrix of the modified Newton scheme used to solve for Yn(j+) is 
independent of both i and j. This property is recognized as a very useful one for a 
numerical integration method to possess. 

The reason why we consider the equi-distribution of errors approach has been 
explained in the first part of this paper and need not be elaborated upon. Thus, in 
conclusion, we can say that we adopt the particular approach described in this paper 
because a) the equi-distribution of errors approach offers some important computa- 
tional advantages which are discussed in Part I, b) our formulae have the advanta- 
geous properties (1)-(4) just described, c) our formulae of orders (2)-(5) require less 
function evaluations per step than are required by conventional S-stable DIRK 
formulae to achieve comparable accuracy, and furthermore, as will be explained in 
Section 5, our formulae can be implemented more efficiently than conventional 
formulae. All of this indicates that our formulae should be significantly more 
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efficient than standard DIRK formulae, and this expectation is borne out by the 
numerical results presented in Section 6. We also note that, since each block is self 
starting, it is only the last LTE in the block which is propagated forward. If an 
accurate solution was required only at the end of the range of integration, we would 
not require the equi-distribution of errors property but would only require an 
accurate solution at the end of each block. However we will not consider this 
problem in the present paper. 

Our aim now is to derive a class of block DIRK formulae which allow variable 
step and variable order but which maintain the computational advantages (I)-(4) 
outlined above. 

3. The General Class of Formulae. One particular class of formulae which satisfies 
the requirements set out in Section 2 has the form (2.3), where A is a lower triangular 
matrix with unit diagonal and c= (1,2,1,2,3,1,2,3,4,...)'. There are several 
important computational and theoretical consequences arising from considering this 
class of formulae, and these can best be explained by reconsidering our second order 
formula (2.5). It is straightforward to verify that if (2.5) is to yield first order 
approximations at n + 1, n + 2 together with second order approximations at n + 1, 
n + 2, n + 3, it must have the particular form 

1 1 
2 1 1 
1 1/2 -1/2 1 

(3.1) 2 2d1 -1 2-2d1 1 
(3.1) ~5 1 

3 2-3d2 3d3 3d2 -2-3d3 1 

5 1 
2-3d2 3d3 3d2 -2-3d3 1 

Two important theoretical points which we wish to make are as follows. Since, for 
example, yn(2+3 is computed over a step length 3h rather than h, Butcher's general 
analysis for Runge-Kutta methods [3] is not immediately applicable. However, 
because of our special choice of ci, the order relations for our formulae still take a 
very simple form. For example, the conditions for the block formula (2.6) to have 
order 4 are 

2 a2(j_)+i,m i, 2a2(j-1)+i,mCm 
= 2 

m m 

2 m,nn . a a2(j- )+ = 3i i 2 a2(j_r)+j,mam,nCn = - 
3 ~~~~~~~~~6 

(3.2) m m, n 

2 a 2(j- 1) + i 4 mcm =-i E a2(j-1)+ijmcmam,nCn = 8 
m m,n 

2. 1 4 mam a14 E a2(j11)+ijmam,nCn 12 i, a2()+j,mam,nan,pCP 24 
m,n m,n,p 

for j = 1, 2. This is equivalent to multiplying all coefficients in (3.1) by I and using 
Butcher's analysis. These order relations generalize for higher order in a straightfor- 
ward way. The second point which we make is that, because of the special form 
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taken by Eq. (3.1) we have 

(3.3) aijcj = 2Ci i = 3,4,5. 

For higher order equations there are several more relationships of this type, and this 
makes the derivation of high order equations particularly straightforward since many 
of the order relations are trivially satisfied. It is worth remarking that in order to 
derive our fifth order formula, given in the next section, we need only to solve six 
linear equations. 

We now return to the problem of choosing the free coefficients appearing in (3.1). 
We will choose two coefficients to get an equi-distribution of errors and the other 
coefficient to ensure L-stability. The principal terms in the local truncation errors 
associated with the second order formulae are 

(3.4a) at n + 1 2h3fyyf 2 + 2h3 2 

(3.4b) atn + 2 -h3 f2 + -h3'1 -3dl fy2f, 

(3.4c) at n + 3 - h3fyyf 2 + -26 h3[- fyf. 

To get a reasonably equal distribution of errors we choose d, = 3/2, d2 = 11/9 + 
2d3. This leads to the final second order block formula 

1 1 
2 1 1 

1 1 
1 I -2 2 1 

(3.5) 2 3 -1 -1 1 
7 _11 1 

3 ---6b 3b + 6b ---3b 1 
6 3 2 

7 11 1 
-6 -- 6b 3b + 6b ---3b 1 

6 3 2 

and it is easy to show that a sufficient condition for this formula to be strongly 
S-stable is I b - < 1. The easiest way of comparing the local truncation errors of the 
original formula (2.4) and the modified formula (3.5) is to consider a linear equation 
since in this case no cancellation of terms in the local truncation errors can occur. A 
simple calculation shows that for linear equations the LTE's associated with (2.4) are 
up to 5 times as large as those associated with (3.5), and our numerical experiments 
have confirmed that (3.5) is generally the more accurate of the two formulae for both 
linear and nonlinear problems. 

4. Some Particular Formulae. Having formulated our general approach in the 
previous section we are now in a position to give some particular formulae. We shall 
again list our second order formula, both for the sake of completeness and also 
because it allows us to describe the precise way in which our formulae are being 
presented. 
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Order 1. 

1 1 
2 1 1 

Strongly S-stable giving first order solutions at n + 1 and n + 2. 
Order 2. 

1 1 
1 - -2 2 1 

2 3 -1 -1 1 b = 0.256. 
7 11 1 

3 ---6b 3b + 6b --3b 1 
6 3 2 

Strongly S-stable giving second order solutions at n + 1, n + 2, n + 3. Thus, to get 
our complete order 2 formula we join the order 2 block onto the bottom of the order 
1 block (see Eq. (3.5)). This procedure extends in an obvious way for all orders. 
Thus, for example, to get the complete third order formula we join the order 3 block 
given below to the bottom of the order 2 block and join the combined blocks to the 
bottom of the order 1 block giving a 9 stage formula. 

Order 3. 
1 2d4 + 8/3 -4/3 - d4 -21/12 - 2d4 d4 5/12 1 
2 2e4 + 10/3 -5/3-e4 e3 e4 1/3 -1-e3-2e4 1 
3 0 0 f f4 -1/4 9/4 - f3 -4 1 

4 294 + 2g7 - 9g4 - g7 5 - 2g4 - g6 - 2g7 g4 g5 96 g7 - - g5 1 

36 1 5 1 1 
d4= 6 e3=- 2 e43 2, 8 f4 - 42, g7=5 

10 10 35 
94=-3 96 6 1 g95=11- 

This formula is S(a)-stable with a = 89.980. Third order solutions are produced at 
n + 1, n + 2, n + 3, n + 4. 

Order 4. 

1 0 0 P31 P32 P33 P34 P35 P36 P37 
2 0 0 q41 q42 q43 q44 q45 q46 q47 q48 

3 0 0 w51 W52 W53 W54 W55 W56 W57 W58 W59 1 

4 0 0 0 0 0 0 0 8/3 -1 8/3 -4/3 0 1 
79 91 149 41 

5 00 0 0 0 0 0 0 0 24 24 24 24 

P31 -0.41, P32 = -22P31/5, P33 = 5P31/3 + 4P32/3, P34 = 31/24 P31, 

p35 -59/24 -P32, P36 = 37/24 - P33, P37 = -3/8. 

q4I =-0.23, q42 = -22q41/5, q43 = 5q41/3 + 4q42/3, q44 = 1.19, 

q45 -8/3 - q42, q46 = 4/3 - q43, q47 - -1/3, q48 = 8/3 - q4-q44 

W51 0.08, W52 = -22w51/5, W53 = 5w51/3 + 4W52/3, W54 = 0.55, 

W55 = -0.49, W56 7/8 - W53, W57 = -3/8, W58 = 63/24 - w5-W54, 

w-, = -9/8 - W52- w55. 
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This formula is strongly S-stable and fourth order solutions are produced at n + 1, 
n + 2, n + 3, n + 4, n + 5. The PLTE at n + 4 is -(14/45)h5yn' while that at n + 5 
is (49/144)h5yn,. 

Order 5. 

1 0 0 0 0 0 0 0 all a12 a13 a14 a15 a16 a17 1 
2 0 0 0 0 0 0 0 a21 a22 a23 a24 a25 a26 a27 a28 

3 0 0 0 0 0 0 0 a3l a32 a33 a34 a35 a36 a37 a38 a39 
4 0 0 0 0 0 0 0 a41 a42 a43 a44 a45 a46 a47 a48 a49 a410 
5 0 0 0 0 0 0 0 0 0 0 0 0 a51 a52 a53 a54 a55 a56 

363 1181 51319 727 
all1= 1.21, 2 =-800' a13 720' a14 13320, 300, 

9473 _251 
a16 = 7200' a7 720 ' a21 0.6, a22= -0.225, a23 = 1.88, 

178 503 29 499 
a24 -45, a25 8/3, a26 -360, a27 0 28 450 
a31 = -0.26, a32 = 0.0975, a33 = 1.41, a34 = -3.2, a35 3.16, 

729 27 621 29 7 
a36-400 a37 -- a3840, a39 -a, a6=-400 a7=80 as=400 39 40 5 4 _ 

21 1 619 
a42 -4, a43-1, 2 a45=2, 46 360' 

28 358 277 51 1715 
a47 gos a48- 90' a49 - 90 a410=4 a 

49 425 175 25 115 
a52= - 144, a53 144, a54 -72 a55= 6 -56 ,4608 

This formula is S(a)-stable with a > 890 and produces fifth order solutions at 
n + 1, n + 2, n + 3, n + 4, n + 5. The PLTE at n + 5 is (475/1440)h6ynvi. 

5. Computational Aspects. The main problems with which we shall concern 
ourselves in this section are: 

(1) The solution of the algebraic equations defining the required solution. 
(2) An algorithm for adjusting the step length of integration. 
(3) An algorithm for varying order. 

Our algorithm for solving the algebraic equations requires little comment since it is 
based on a modified Newton iteration scheme, and these are now widely used in 
practice. When obtaining an initial approximation to y,Ji'i we use 

(a) yn(j+ I) if this has been computed. 
(b) y,n(j)i-Il otherwise. 

We choose to use these initial approximations since the function values (or close 
approximations to them) associated with these quantities have already been com- 
puted, and this normally makes the computation of the next iterate particularly 
cheap. Thus, when computing yn(,4i, the equation which we are seeking an approxi- 
mate solution of is 

(5. la) = + hf(x0?,, y(j$)) 
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where 2 is a known sum. We seek to find a solution of this using the modified 
Newton iteration scheme 

(5. lb) I I-hJ yn(j+i, p-yn()p = -yn(),p-I + hf(Xn+i Yn(j)i,p-1) + , 

p = 1,2,... . M, YnJ+iYWi,M. 

If j > 1, we can use the initial approximation yn(j)io = yn(,i 1) and thus an approxima- 
tion to the derivative f(xn+, yn(j,)io) will also be available. In view of this, when 
applying (5.1b) with p = 1, we require no function evaluation and only one 
backsolve. It is this property in particular which makes our schemes computationally 
efficient and explains why, for the results of Section 6, a backsolve is not necessarily 
accompanied by a function evaluation. 

For the modified Newton scheme (5.1b) a minimum of four iterations were 
allowed and a solution of (5.1b) was accepted when two iterates differed in a 
weighted least-squares norm by less than 2 Tol/5, where Tol is the requested 
tolerance. Solutions at off-step points were computed in a straightforward way by 
interpolation. Finally, we note that since our iterates are an approximation to the 
solution of (5.1a), once that our final iterate yn(,+) has been computed, we can 
compute an approximation f(Xn+i Yn(J) tof(Xn+, yn(y) ) using the relation 

(5.1c) f (xn + i y$(J4) (Yn(+)i )- h 

We prefer this to computingf(Xn+i, y)ij) since the latter amplifies the errors in y(i) 
which may result in instability and also it saves one function evaluation. 

To explain our algorithms for changing stepsize and order it is convenient to 
consider our first order block scheme which we write symbolically as 

1st order 1 2 

2nd order 3 4. 

Our order and stepchanging algorithms have been greatly influenced by STRIDE [4]. 
In particular, the embedded estimate yn(2) i- yn()i is used to approximate the error in 
the first order solutions yn(,)i, i = 1, 2. Having obtained these error estimates, we 
investigate whether or not it is economical to increase order. To do this we need to 
estimate the local truncation error in yn(2) and this brings us to an interesting point 
regarding truncation errors. If we consider the backward Euler rule, the usual 
expression for the local truncation error on the assumptionyn = y(xn) is 

(5.2) T.E. y(xn+ 1) -Y(Xn) - hf(xn+ 1, Y(Xn+ 1)) 

h 
Y_(X -) 

_ h Y ..(Xn) + 0(h 4). 

However, if we apply Butcher's analysis, we obtain 

(5.3) T.E. = Y"(Xn)U- fyyf 2 _ -h3fy2f 2 3 6 

which is different from (5.2). This is only a normalization difference but it does 
present us with the problem of deciding exactly what we are going to approximate in 
practice. We feel that Butcher's definition is more appropriate, and so we use this 
from now on. Using this analysis, we obtain the following relations: 
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(5.4) y(xn+I) Y,8)I = - 2 fyf _1L1y f 2-% h3f 2f 3 O(h4) 

y(Xn+2) Y,82 = -h2ff- h3f 2 -_ 3hf+ 0(4), 

y(x,54) _21 = 2h3fyyf2+4h3f7f+ 0(h4), 

y(Xn+2)- Y,(+2 = 3h3fyf - -h3fJ f + 0(h4). 

Also 

(5.5) Zn-2)-4f(x , YyX) + 3f(x , Yn2)} 

= h2fyf+ 0(h4). 

Eliminating the second order terms in h from (5.4) and solving for h3fyyf 2 and 
h3fy2f- we obtain 

(5 .6a) P -2(y1 () -y,(1) -( y(Y2)2Y(12) = -jjh3fy2f + 0( h4), 

(5.6b) J {Yn+l Yn+l +h zn-3Pn} =h3f Of2h+ 0(h4). 

Using these two relations we can estimate the local truncation errors TEl, TE2 in 
the second order solutions Y t h4 o Y1 m h2* 

Defining 

F1 = max - + F2 = max{ 
1 

TEl 11, IITE2I I}, 

where 

={y I_ { [[Yn?j,fYnI -Zn ) ,,' iviax(1, y( h,)f })J 

we can compute 

(5.7) hi = h(Tol/Ei )l//(i? l), i = 1,2, 

which is the predicted step that can be used with the ith order formula. [In practice 
we use a slightly smaller step size to minimize the likelihood of block rejection.] This 
enables us to compute 

= = 2h1/4 w2 = 3h 2/8, 

which gives a measure of the distance that can be integrated forward per iterate 
computed (cf. [2, p. 442]). If w1 > w2, we accept the first order solutions and carry 
on to the next block. If w2 > w1, we compute the solution y,(2, local extrapolation is 
performed at n + 1, n + 2 50 that Y,(2, Y,2 are the finally accepted solutions, and 
we continue forward with the second order scheme. 

We denote the second order scheme symbolically by 

1st order 1 2 

2nd order 3 4 5 

3rd order 6 7 8 
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We see that error estimates for the first and second order solutions are immediately 
available through embedding, and an error estimate in the third order solution can 
be computed using an extension of the procedure previously described. Thus we can 
decide whether to keep the order fixed, decrease it by one or increase it by one, and 
this is what is normally done with linear multistep methods. Order changing for 
higher order equations is simplified by constructing the fourth and fifth order 
formulae so that the PLTE's at the end of the blocks are total derivatives. These can 
be estimated in the usual way by finite difference approximations and errors in 
lower order solutions are estimated by embedding. Using these error estimates the 
order changing algorithm just described extends in a natural way. 

Finally, we note that once a stepsize h' has been computed using (5.7) the actual 
stepsize taken, h, is less than the computed stepsize h' with the relationships being 

h 0.7h' order 2I 

h-0.75h' order 2 
h 0.8h' order=3, 
h 0.85h' order 4. 

It was found to be advisable to adopt this strategy since it minimzes the likelihood 
of expensive block rejections; see also [9]. 

6. Numerical Results. In this section we shall compare our algorithms with existing 
DIRK methods. We will show that for the test problems considered our order and 
step changing strategies are satisfactory and the results obtained are competitive 
with those previously published for DIRK methods. We have also made compari- 
sons on other test problems using our implementation of Alexander's scheme, and 
the results which we list in this section seem to be fairly typical. The three test 
problems considered are 

(l) 01 =0(0l -(0.01 ?Y+ + 
100y_0), 

0o, 

Y2 0.01 -(0.01 + YI + Y2)(1 + y2 Y2(0) 0, 

(2) Cl1 

(3) C5 

where Cl and C5 are test problems taken from Enright, Hull and Lindberg [5, p. 
298]. These test problems were chosen firstly because they allow us to compare our 
results with certain previously published ones [5] and secondly because Alexander [1] 
reported difficulty in solving at least one of these problems. In Table I we compare 
the performance of Alexander's strongly S-stable third order scheme [1], the third 
order scheme given by Cash [5, p. 295] and the third order block scheme of Section 
4. For the first two methods a function evaluation always entails a back substitution 
for the Newton iteration scheme. However, as was explained in detail in Section 5, 
this is not the case for our block scheme, and so we explicitly list the number of 
backsolves required. Because many of our Newton iterations use an already com- 
puted function approximation (see Section 5) the number of function evaluations 
required by our block methods at low tolerances is very small and this is reflected in 
the results of Tables 1, 2. As can be seen from Table l, the gain in efficiency of the 
block scheme over the other two DIRK schemes is significant. The headings in Table 
1 are self-explanatory apart from Rd. Err. which gves the relative error at the end of 
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the range of integration. Finally we should emphasize most strongly that the 
implementations of the algorithms discussed in this paper have purposely been kept 
very simple and are in no way optimal. This is done so that we can easily compare 
actual methods themselves rather than sophisticated implementations of different 
methods. It is to be expected, as our preliminary results together with the results of 
Alexander [1] have shown, that a proper implementation of the DIRK methods 
discussed would give much greater efficiency than is indicated by the results of 
Tables 1, 2. 

In Table 2 we present the results obtained using our variable order algorithm 
based on the ideas of the previous section. Again we see that the increase in 
efficiency over the schemes presented in [1], [5] is significant. We have also found 
that, over all tolerances our variable order algorithm is more efficient than fixed 
order algorithms based on the methods of Section 4 and this leads us to believe that 
variable step-variable order block DIRK formulae offer a promising approach to the 
numerical integration of stiff differential systems. 

Acknowledgement. The author is grateful to Professor J. D. Lambert for many 
helpful suggestions and also to an anonymous referee, whose many comments greatly 
improved this paper. 

TABLE 2 
Results for variable order 

Tol. Fn BACKSOLVES JAC STEPS Rel ERR 

P1 10-2 7 30 6 12 .12 E-1 
lo-, 65 139 20 27 .58 E-3 
10-4 155 298 28 49 .86 E-4 

10-5 339 751 39 97 .10 E-4 

P2 10-2 63 179 15 50 .37 E-2 
l-, 135 489 20 97 .37 E-3 

10-4 310 839 19 142 .11 E-3 
10-5 738 1552 12 217 .75 E-5 

P3 10-2 134 260 16 59 .48 E-5 
l-, 577 1466 16 237 .41 E-7 
1-4 1188 2798 20 427 .23 E-7 
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