
MATHEMATICS OF COMPUTATION
VOLUME 40, NUMBER 161
JANUARY 1983, PAGES 193-206

Block Runge-Kutta Methods for the
Numerical Integration of Initial Value Problems

in Ordinary Differential Equations
Part II. The Stiff Case

By J. R. Cash

Abstract. The approach described in the first part of this paper is extended to include
diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for
the numerical integration of stiff differential systems, and their efficiency is illustrated by
means of some numerical examples.

1. Introduction. In a recent paper [2], Cash and Bond have derived a class of block
cyclic integration formulae suitable for the numerical integration of the stiff dif-
ferential system

(1.1) dy = f(X) y(x0) =yo, y ERS

These formulae were derived and analyzed as block implicit linear multistep meth-
ods. However, a much more convenient way of investigating them is to consider
them as block diagonally implicit Runge-Kutta formulae. In the second part of this
paper we extend the analysis presented in Part I to derive a new class of block
DIRK formulae. These formulae have the implicitness necessary for the efficient
solution of stiff differential systems but do not call for the large computational effort
normally required by fully implicit Runge-Kutta formulae. This new, much more
general, approach allows us to derive formulae with many advantages over the
formulae derived in [2] and among these advantages are:

(1) Better accuracy.
(2) Better stability.
(3) A better algorithm for estimating the local truncation error and hence for

adjusting the step length of integration and varying the order of the formula being
used.

The better accuracy and stability comes from the fact that, by writing our
formulae as block DIRK methods, we have numerous free parameters at our
disposal and these can be used to advantage. The better order and step changing
algorithms result from the fact that, although the error estimation procedures given
in [2] generally perform well in practice, they are not asymptotically correct in the
sense that they do not necessarily yield the correct error estimate in the limit h = 0.

Received August 10, 1981; revised February 24, 1982 and June 21, 1982.
1980 Mathematics Subject Classification. Primary 65L05.

(1 983 American Mathematical Society
0025-5718/82/0000-071 2/$03.75

193

194 J. R. CASH

Furthermore, there are classes of problems for which the error estimates given in [2]
perform very poorly [11]. A direct extension of the error estimation algorithm given
in Part I of this paper is inappropriate since this in effect gives an error estimate per
unit step, and our numerical experience with block methods indicates that this is not
the best way to control the error when integrating stiff differential systems. Instead
we will present a different error estimation algorithm which is asymptotically correct
as h -- 0 and which has been found to perform well in practice. A different way of
building up the block will also be described, and this has been found to be much
more efficient than that described in [2].

2. The General Approach. In this section we describe our general approach to the
problem of deriving efficient block diagonally implicit Runge-Kutta formulae.
DIRK formulae were first proposed by N0rsett [14] and have more recently been
investigated and extended by Alexander [1], Crouzieux [7] and Cash [5]. The idea of
using Runge-Kutta formulae in a block form is an old one-going back at least as
far as Milne [13] and more recently developed in the implicit case by Shampine and
Watts [16], Williams and de Hoog [17] and Gear [8]. However, investigations of
implicit block integration formulae have been based on fully implicit Runge-Kutta
formulae, and an investigation of the potentially more efficient class of block DIRK
formulae has not been considered. In part this is due to the fact that block formulae
are sometimes only proposed as starting procedures for high order linear multistep
methods [8]. As we shall see later, DIRK formulae lend themselves naturally to
efficient implementation in block form and have several computational advantages
over other Runge-Kutta formulae for the integration of stiff differential systems.

As the starting point of our analysis we consider the second order implicit
integration formula given in [2]

(2. .1) Yn(li = Yn(I+i- I + hf (Xn+i , Yn(I+i) I i 2, Yn(l)Yn

Yn+ i =Yn +i- I + hf (Xn +i I Yn+ i)-2 Y\h Yn(l I) i= 2 3 n)-Y

where AhYn(l)=_Yn(+1I yn(l) and where we assume that the solution has already been
computed up to and including the point (xn, Yn). Our first step is to express this
formula as a Runge-Kutta method of the general form

q q

(2*2) yn +I -yn= h :E bi ki, kj=f Xn +cih, Yn + h 2 aijkj, 1 < i <q.
i=1 j=1

A particularly convenient way of expressing our Runge-Kutta formula is to use the
well-known "Butcher Matrix" notation whereby (2.2) is represented in the form

(2.3) c A
bT

BLOCK RUNGE-KUTTA METHODS 195

Here A is the q X q matrix a and b, c are vectors of dimension q. Using this
notation we can write formula (2.1) for the computation of y,(23 as

1 1
2 1 1

(2.4) 2 1/2 -1/2 1

3 3/2 -3/2 1 1 1

3/2 -3/2 1 1 1

see also [6, p. 1 15]. This formula has the important property that as well as providing
a second order solution at xn+3 it also provides both first and second order solutions
at xn+Il and xn+2' In addition, if (2.4) is expressed in the more general form

1 all
2 a21 a22

(2.5) 1 a31 a32 a33
2 a41 a42 a43 a44
3 a51 a52 a53 a54 a55

a51 a52 a53 a54 a55

the formula used to computeyn(j)i,,j E [1, 2], i E [1, 2] and; j = 2, i = 3 is

2(j- 1)+i

(2.6) yn(y)i =yn + h 2 a2(frl)+i,mkm
m=1

Thus, for example, the formulae used to compute Yn(+1 Yn(+12, +) y2, 3 are
respectively

111 11 1 1 1 1
12 1 2 1 1 2 1 1

1 1 1 1/2 -1/2 1 1 1/2 -1/2 1 and (2.4)

1/2 -1/2 1 2 1 -1 1 1
1 -1 1 1

We see that our five stage block formula (2.4) provides 5 separate solutions and, as
will be seen later, this rule generalizes in that our general m-stage formula yields m
separate solutions.

Our aim now is to generalize formula (2.4) to (2.5) and to choose the extra free
parameters at our disposal so as to improve the computational efficiency of our
method. This is not entirely straightforward because formula (2.4) has proved to be
remarkably efficient. What we need to do is to isolate the precise reasons for this
efficiency and then to make sure that (2.5) also shares these properties. The main
reasons for the efficiency of (2.4) are:

(1) At each step we solve for a yn(j)i value rather than for an "f value". This
property, which is also shared by some other implicit Runge-Kutta formulae, makes
the process of prediction much simpler, and also we are able to use many of the well
tried devices incorporated by Hindmarsh [9] in his version of GEAR. In particular,

196 J. R. CASH

when computing y,(2+ 1, y,(2) we already have the (normally very good) approxima-
tions Y,,(i' Yn(+2 available and, furthermore, we have a built-in local error estimate
y(2)i-(vial fr err iw

Yn2+i-yn,(+i available for the error in y 1, 2. This is highlighted if we consider
the first three steps of (2.1) which are

Y,n(+ y,=Y + hf(xn+2 , yn(+)

Yn(+l =2Yn(+l I + hf (Xn +2 S Yn(+2l) 2

,2i yyn? f(2?1 Y7I) -
I

- 2 yn,lI ?yn) Yn+ I=Yn + hf (Xn+ I I Y(+ 1)2 (Yn(+l)2-Y(I + Y

We see that when computing yn(2+1 we already have the iterate Yn(lI available and,
furthermore, f(xn +I Yn(,l) will also be available. Thus the computation of y,(1 is
normally very cheap. Our numerical experience has shown that the five-stage block
formula (2.4) generally requires considerably less computational effort than is
required by a conventional five-stage DIRK formula. Also formula (2.4) obtains
second order accuracy at three grid points using 5 stages, whereas, for Alexander's
second order formula, to obtain comparable accuracy at the same three grid points,
6 stages are required. Furthermore, for reasons just explained, the computation
required to use (2.4) is normally much less than it would be for Alexander's or
similar schemes (see also the results of Section 6). Finally, we remark that all
formulae in this paper require less function evaluations per step than are required by
conventional DIRK formulae of the same order to achieve comparable accuracy.
This leads us to make the important point that, although in the explicit case we can
normally compare the efficiency of two (nonblock) Runge-Kutta formulae of the
same order by counting the number of stages, in the case of implicit Runge-Kutta
formulae such a comparison may not be valid. Indeed, when comparing block DIRK
formulae with conventional DIRK formulae such a criterion is almost invariably of
little value since stages in block formulae normally require much less computational
effort than stages in conventional DIRK formulae. The other properties we require,
and these are shared by some other implicit Runge-Kutta formulae, are:

(2) Our formulae are strongly S-stable [15].
(3) Our formulae simultaneously produce approximations at a sequence of points.

In general we require that our pth order formulae should produce pth order
solutions at p + 1 equally spaced points.

(4) The coefficient matrix of the modified Newton scheme used to solve for Yn(j+) is
independent of both i and j. This property is recognized as a very useful one for a
numerical integration method to possess.

The reason why we consider the equi-distribution of errors approach has been
explained in the first part of this paper and need not be elaborated upon. Thus, in
conclusion, we can say that we adopt the particular approach described in this paper
because a) the equi-distribution of errors approach offers some important computa-
tional advantages which are discussed in Part I, b) our formulae have the advanta-
geous properties (1)-(4) just described, c) our formulae of orders (2)-(5) require less
function evaluations per step than are required by conventional S-stable DIRK
formulae to achieve comparable accuracy, and furthermore, as will be explained in
Section 5, our formulae can be implemented more efficiently than conventional
formulae. All of this indicates that our formulae should be significantly more

BLOCK RUNGE-KUTTA METHODS 197

efficient than standard DIRK formulae, and this expectation is borne out by the
numerical results presented in Section 6. We also note that, since each block is self
starting, it is only the last LTE in the block which is propagated forward. If an
accurate solution was required only at the end of the range of integration, we would
not require the equi-distribution of errors property but would only require an
accurate solution at the end of each block. However we will not consider this
problem in the present paper.

Our aim now is to derive a class of block DIRK formulae which allow variable
step and variable order but which maintain the computational advantages (I)-(4)
outlined above.

3. The General Class of Formulae. One particular class of formulae which satisfies
the requirements set out in Section 2 has the form (2.3), where A is a lower triangular
matrix with unit diagonal and c= (1,2,1,2,3,1,2,3,4,...)'. There are several
important computational and theoretical consequences arising from considering this
class of formulae, and these can best be explained by reconsidering our second order
formula (2.5). It is straightforward to verify that if (2.5) is to yield first order
approximations at n + 1, n + 2 together with second order approximations at n + 1,
n + 2, n + 3, it must have the particular form

1 1
2 1 1
1 1/2 -1/2 1

(3.1) 2 2d1 -1 2-2d1 1
(3.1) ~5 1

3 2-3d2 3d3 3d2 -2-3d3 1

5 1
2-3d2 3d3 3d2 -2-3d3 1

Two important theoretical points which we wish to make are as follows. Since, for
example, yn(2+3 is computed over a step length 3h rather than h, Butcher's general
analysis for Runge-Kutta methods [3] is not immediately applicable. However,
because of our special choice of ci, the order relations for our formulae still take a
very simple form. For example, the conditions for the block formula (2.6) to have
order 4 are

2 a2(j_)+i,m i, 2a2(j-1)+i,mCm
= 2

m m

2 m,nn . a a2(j-)+ = 3i i 2 a2(j_r)+j,mam,nCn = -
3 ~~~~~~~~~6

(3.2) m m, n

2 a 2(j- 1) + i 4 mcm =-i E a2(j-1)+ijmcmam,nCn = 8
m m,n

2. 1 4 mam a14 E a2(j11)+ijmam,nCn 12 i, a2()+j,mam,nan,pCP 24
m,n m,n,p

for j = 1, 2. This is equivalent to multiplying all coefficients in (3.1) by I and using
Butcher's analysis. These order relations generalize for higher order in a straightfor-
ward way. The second point which we make is that, because of the special form

198 J. R. CASH

taken by Eq. (3.1) we have

(3.3) aijcj = 2Ci i = 3,4,5.

For higher order equations there are several more relationships of this type, and this
makes the derivation of high order equations particularly straightforward since many
of the order relations are trivially satisfied. It is worth remarking that in order to
derive our fifth order formula, given in the next section, we need only to solve six
linear equations.

We now return to the problem of choosing the free coefficients appearing in (3.1).
We will choose two coefficients to get an equi-distribution of errors and the other
coefficient to ensure L-stability. The principal terms in the local truncation errors
associated with the second order formulae are

(3.4a) at n + 1 2h3fyyf 2 + 2h3 2

(3.4b) atn + 2 -h3 f2 + -h3'1 -3dl fy2f,

(3.4c) at n + 3 - h3fyyf 2 + -26 h3[- fyf.

To get a reasonably equal distribution of errors we choose d, = 3/2, d2 = 11/9 +
2d3. This leads to the final second order block formula

1 1
2 1 1

1 1
1 I -2 2 1

(3.5) 2 3 -1 -1 1
7 _11 1

3 ---6b 3b + 6b ---3b 1
6 3 2

7 11 1
-6 -- 6b 3b + 6b ---3b 1

6 3 2

and it is easy to show that a sufficient condition for this formula to be strongly
S-stable is I b - < 1. The easiest way of comparing the local truncation errors of the
original formula (2.4) and the modified formula (3.5) is to consider a linear equation
since in this case no cancellation of terms in the local truncation errors can occur. A
simple calculation shows that for linear equations the LTE's associated with (2.4) are
up to 5 times as large as those associated with (3.5), and our numerical experiments
have confirmed that (3.5) is generally the more accurate of the two formulae for both
linear and nonlinear problems.

4. Some Particular Formulae. Having formulated our general approach in the
previous section we are now in a position to give some particular formulae. We shall
again list our second order formula, both for the sake of completeness and also
because it allows us to describe the precise way in which our formulae are being
presented.

BLOCK RUNGE-KUTTA METHODS 199

Order 1.

1 1
2 1 1

Strongly S-stable giving first order solutions at n + 1 and n + 2.
Order 2.

1 1
1 - -2 2 1

2 3 -1 -1 1 b = 0.256.
7 11 1

3 ---6b 3b + 6b --3b 1
6 3 2

Strongly S-stable giving second order solutions at n + 1, n + 2, n + 3. Thus, to get
our complete order 2 formula we join the order 2 block onto the bottom of the order
1 block (see Eq. (3.5)). This procedure extends in an obvious way for all orders.
Thus, for example, to get the complete third order formula we join the order 3 block
given below to the bottom of the order 2 block and join the combined blocks to the
bottom of the order 1 block giving a 9 stage formula.

Order 3.
1 2d4 + 8/3 -4/3 - d4 -21/12 - 2d4 d4 5/12 1
2 2e4 + 10/3 -5/3-e4 e3 e4 1/3 -1-e3-2e4 1
3 0 0 f f4 -1/4 9/4 - f3 -4 1

4 294 + 2g7 - 9g4 - g7 5 - 2g4 - g6 - 2g7 g4 g5 96 g7 - - g5 1

36 1 5 1 1
d4= 6 e3=- 2 e43 2, 8 f4 - 42, g7=5

10 10 35
94=-3 96 6 1 g95=11-

This formula is S(a)-stable with a = 89.980. Third order solutions are produced at
n + 1, n + 2, n + 3, n + 4.

Order 4.

1 0 0 P31 P32 P33 P34 P35 P36 P37
2 0 0 q41 q42 q43 q44 q45 q46 q47 q48

3 0 0 w51 W52 W53 W54 W55 W56 W57 W58 W59 1

4 0 0 0 0 0 0 0 8/3 -1 8/3 -4/3 0 1
79 91 149 41

5 00 0 0 0 0 0 0 0 24 24 24 24

P31 -0.41, P32 = -22P31/5, P33 = 5P31/3 + 4P32/3, P34 = 31/24 P31,

p35 -59/24 -P32, P36 = 37/24 - P33, P37 = -3/8.

q4I =-0.23, q42 = -22q41/5, q43 = 5q41/3 + 4q42/3, q44 = 1.19,

q45 -8/3 - q42, q46 = 4/3 - q43, q47 - -1/3, q48 = 8/3 - q4-q44

W51 0.08, W52 = -22w51/5, W53 = 5w51/3 + 4W52/3, W54 = 0.55,

W55 = -0.49, W56 7/8 - W53, W57 = -3/8, W58 = 63/24 - w5-W54,

w-, = -9/8 - W52- w55.

200 J. R. CASH

This formula is strongly S-stable and fourth order solutions are produced at n + 1,
n + 2, n + 3, n + 4, n + 5. The PLTE at n + 4 is -(14/45)h5yn' while that at n + 5
is (49/144)h5yn,.

Order 5.

1 0 0 0 0 0 0 0 all a12 a13 a14 a15 a16 a17 1
2 0 0 0 0 0 0 0 a21 a22 a23 a24 a25 a26 a27 a28

3 0 0 0 0 0 0 0 a3l a32 a33 a34 a35 a36 a37 a38 a39
4 0 0 0 0 0 0 0 a41 a42 a43 a44 a45 a46 a47 a48 a49 a410
5 0 0 0 0 0 0 0 0 0 0 0 0 a51 a52 a53 a54 a55 a56

363 1181 51319 727
all1= 1.21, 2 =-800' a13 720' a14 13320, 300,

9473 _251
a16 = 7200' a7 720 ' a21 0.6, a22= -0.225, a23 = 1.88,

178 503 29 499
a24 -45, a25 8/3, a26 -360, a27 0 28 450
a31 = -0.26, a32 = 0.0975, a33 = 1.41, a34 = -3.2, a35 3.16,

729 27 621 29 7
a36-400 a37 -- a3840, a39 -a, a6=-400 a7=80 as=400 39 40 5 4 _

21 1 619
a42 -4, a43-1, 2 a45=2, 46 360'

28 358 277 51 1715
a47 gos a48- 90' a49 - 90 a410=4 a

49 425 175 25 115
a52= - 144, a53 144, a54 -72 a55= 6 -56 ,4608

This formula is S(a)-stable with a > 890 and produces fifth order solutions at
n + 1, n + 2, n + 3, n + 4, n + 5. The PLTE at n + 5 is (475/1440)h6ynvi.

5. Computational Aspects. The main problems with which we shall concern
ourselves in this section are:

(1) The solution of the algebraic equations defining the required solution.
(2) An algorithm for adjusting the step length of integration.
(3) An algorithm for varying order.

Our algorithm for solving the algebraic equations requires little comment since it is
based on a modified Newton iteration scheme, and these are now widely used in
practice. When obtaining an initial approximation to y,Ji'i we use

(a) yn(j+ I) if this has been computed.
(b) y,n(j)i-Il otherwise.

We choose to use these initial approximations since the function values (or close
approximations to them) associated with these quantities have already been com-
puted, and this normally makes the computation of the next iterate particularly
cheap. Thus, when computing yn(,4i, the equation which we are seeking an approxi-
mate solution of is

(5. la) = + hf(x0?,, y(j$))

BLOCK RUNGE-KUTTA METHODS 201

where 2 is a known sum. We seek to find a solution of this using the modified
Newton iteration scheme

(5. lb) I I-hJ yn(j+i, p-yn()p = -yn(),p-I + hf(Xn+i Yn(j)i,p-1) + ,

p = 1,2,... . M, YnJ+iYWi,M.

If j > 1, we can use the initial approximation yn(j)io = yn(,i 1) and thus an approxima-
tion to the derivative f(xn+, yn(j,)io) will also be available. In view of this, when
applying (5.1b) with p = 1, we require no function evaluation and only one
backsolve. It is this property in particular which makes our schemes computationally
efficient and explains why, for the results of Section 6, a backsolve is not necessarily
accompanied by a function evaluation.

For the modified Newton scheme (5.1b) a minimum of four iterations were
allowed and a solution of (5.1b) was accepted when two iterates differed in a
weighted least-squares norm by less than 2 Tol/5, where Tol is the requested
tolerance. Solutions at off-step points were computed in a straightforward way by
interpolation. Finally, we note that since our iterates are an approximation to the
solution of (5.1a), once that our final iterate yn(,+) has been computed, we can
compute an approximation f(Xn+i Yn(J) tof(Xn+, yn(y)) using the relation

(5.1c) f (xn + i y$(J4) (Yn(+)i)- h

We prefer this to computingf(Xn+i, y)ij) since the latter amplifies the errors in y(i)
which may result in instability and also it saves one function evaluation.

To explain our algorithms for changing stepsize and order it is convenient to
consider our first order block scheme which we write symbolically as

1st order 1 2

2nd order 3 4.

Our order and stepchanging algorithms have been greatly influenced by STRIDE [4].
In particular, the embedded estimate yn(2) i- yn()i is used to approximate the error in
the first order solutions yn(,)i, i = 1, 2. Having obtained these error estimates, we
investigate whether or not it is economical to increase order. To do this we need to
estimate the local truncation error in yn(2) and this brings us to an interesting point
regarding truncation errors. If we consider the backward Euler rule, the usual
expression for the local truncation error on the assumptionyn = y(xn) is

(5.2) T.E. y(xn+ 1) -Y(Xn) - hf(xn+ 1, Y(Xn+ 1))

h
Y_(X -)

_ h Y ..(Xn) + 0(h 4).

However, if we apply Butcher's analysis, we obtain

(5.3) T.E. = Y"(Xn)U- fyyf 2 _ -h3fy2f 2 3 6

which is different from (5.2). This is only a normalization difference but it does
present us with the problem of deciding exactly what we are going to approximate in
practice. We feel that Butcher's definition is more appropriate, and so we use this
from now on. Using this analysis, we obtain the following relations:

202 J. R. CASH

(5.4) y(xn+I) Y,8)I = - 2 fyf _1L1y f 2-% h3f 2f 3 O(h4)

y(Xn+2) Y,82 = -h2ff- h3f 2 -_ 3hf+ 0(4),

y(x,54) _21 = 2h3fyyf2+4h3f7f+ 0(h4),

y(Xn+2)- Y,(+2 = 3h3fyf - -h3fJ f + 0(h4).

Also

(5.5) Zn-2)-4f(x , YyX) + 3f(x , Yn2)}

= h2fyf+ 0(h4).

Eliminating the second order terms in h from (5.4) and solving for h3fyyf 2 and
h3fy2f- we obtain

(5 .6a) P -2(y1 () -y,(1) -(y(Y2)2Y(12) = -jjh3fy2f + 0(h4),

(5.6b) J {Yn+l Yn+l +h zn-3Pn} =h3f Of2h+ 0(h4).

Using these two relations we can estimate the local truncation errors TEl, TE2 in
the second order solutions Y t h4 o Y1 m h2*

Defining

F1 = max - + F2 = max{
1

TEl 11, IITE2I I},

where

={y I_ { [[Yn?j,fYnI -Zn) ,,' iviax(1, y(h,)f })J

we can compute

(5.7) hi = h(Tol/Ei)l//(i? l), i = 1,2,

which is the predicted step that can be used with the ith order formula. [In practice
we use a slightly smaller step size to minimize the likelihood of block rejection.] This
enables us to compute

= = 2h1/4 w2 = 3h 2/8,

which gives a measure of the distance that can be integrated forward per iterate
computed (cf. [2, p. 442]). If w1 > w2, we accept the first order solutions and carry
on to the next block. If w2 > w1, we compute the solution y,(2, local extrapolation is
performed at n + 1, n + 2 50 that Y,(2, Y,2 are the finally accepted solutions, and
we continue forward with the second order scheme.

We denote the second order scheme symbolically by

1st order 1 2

2nd order 3 4 5

3rd order 6 7 8

BLOCK RUNGE-KUTTA METHODS 203

We see that error estimates for the first and second order solutions are immediately
available through embedding, and an error estimate in the third order solution can
be computed using an extension of the procedure previously described. Thus we can
decide whether to keep the order fixed, decrease it by one or increase it by one, and
this is what is normally done with linear multistep methods. Order changing for
higher order equations is simplified by constructing the fourth and fifth order
formulae so that the PLTE's at the end of the blocks are total derivatives. These can
be estimated in the usual way by finite difference approximations and errors in
lower order solutions are estimated by embedding. Using these error estimates the
order changing algorithm just described extends in a natural way.

Finally, we note that once a stepsize h' has been computed using (5.7) the actual
stepsize taken, h, is less than the computed stepsize h' with the relationships being

h 0.7h' order 2I

h-0.75h' order 2
h 0.8h' order=3,
h 0.85h' order 4.

It was found to be advisable to adopt this strategy since it minimzes the likelihood
of expensive block rejections; see also [9].

6. Numerical Results. In this section we shall compare our algorithms with existing
DIRK methods. We will show that for the test problems considered our order and
step changing strategies are satisfactory and the results obtained are competitive
with those previously published for DIRK methods. We have also made compari-
sons on other test problems using our implementation of Alexander's scheme, and
the results which we list in this section seem to be fairly typical. The three test
problems considered are

(l) 01 =0(0l -(0.01 ?Y+ +
100y_0),

0o,

Y2 0.01 -(0.01 + YI + Y2)(1 + y2 Y2(0) 0,

(2) Cl1

(3) C5

where Cl and C5 are test problems taken from Enright, Hull and Lindberg [5, p.
298]. These test problems were chosen firstly because they allow us to compare our
results with certain previously published ones [5] and secondly because Alexander [1]
reported difficulty in solving at least one of these problems. In Table I we compare
the performance of Alexander's strongly S-stable third order scheme [1], the third
order scheme given by Cash [5, p. 295] and the third order block scheme of Section
4. For the first two methods a function evaluation always entails a back substitution
for the Newton iteration scheme. However, as was explained in detail in Section 5,
this is not the case for our block scheme, and so we explicitly list the number of
backsolves required. Because many of our Newton iterations use an already com-
puted function approximation (see Section 5) the number of function evaluations
required by our block methods at low tolerances is very small and this is reflected in
the results of Tables 1, 2. As can be seen from Table l, the gain in efficiency of the
block scheme over the other two DIRK schemes is significant. The headings in Table
1 are self-explanatory apart from Rd. Err. which gves the relative error at the end of

204 J. R. CASH

C _ m o m t4l oo
li I I I II II II I

.

V) 4 'It ? "o ? "t t -? t ?

a)L - N _ o

e "t ON 'IC00 -

V oo "o m > oNm 'IC oo 'IC 0 4
U

(ON _oe
ie
00 _ _ _ _

a) V

0 5 o o
oo o1 m

xo
c

u

(-ON e m t m _ o (ON
V) - N t o-

m _- "o oo C1 m 40t t

-

e t oo No m I

ON ON

II II I II II I

ON ON e r -ON

_4 ~ ~ ~ ~~~

U e co m t00 'IC

M V IC0

< < o0zv CN _-1 o Xt

00Q N 00 Qo N r-Q o co 00

V CN t - N C _ N C- m tn m

I m I o I ? I I I I o

4 - M o- - -2 ,,m

r _ _ _T _n rq _ n r m "T

0 ro o NNt Nex

H . .1;L1 [L

BLOCK RUNGE-KUTTA METHODS 205

the range of integration. Finally we should emphasize most strongly that the
implementations of the algorithms discussed in this paper have purposely been kept
very simple and are in no way optimal. This is done so that we can easily compare
actual methods themselves rather than sophisticated implementations of different
methods. It is to be expected, as our preliminary results together with the results of
Alexander [1] have shown, that a proper implementation of the DIRK methods
discussed would give much greater efficiency than is indicated by the results of
Tables 1, 2.

In Table 2 we present the results obtained using our variable order algorithm
based on the ideas of the previous section. Again we see that the increase in
efficiency over the schemes presented in [1], [5] is significant. We have also found
that, over all tolerances our variable order algorithm is more efficient than fixed
order algorithms based on the methods of Section 4 and this leads us to believe that
variable step-variable order block DIRK formulae offer a promising approach to the
numerical integration of stiff differential systems.

Acknowledgement. The author is grateful to Professor J. D. Lambert for many
helpful suggestions and also to an anonymous referee, whose many comments greatly
improved this paper.

TABLE 2
Results for variable order

Tol. Fn BACKSOLVES JAC STEPS Rel ERR

P1 10-2 7 30 6 12 .12 E-1
lo-, 65 139 20 27 .58 E-3
10-4 155 298 28 49 .86 E-4

10-5 339 751 39 97 .10 E-4

P2 10-2 63 179 15 50 .37 E-2
l-, 135 489 20 97 .37 E-3

10-4 310 839 19 142 .11 E-3
10-5 738 1552 12 217 .75 E-5

P3 10-2 134 260 16 59 .48 E-5
l-, 577 1466 16 237 .41 E-7
1-4 1188 2798 20 427 .23 E-7

Department of Mathematics
Imperial College
South Kensington
London S.W.7, England

1. R. ALEXANDER, " Diagonally implicit Runge-Kutta methods for stiff ordinary differential equations,"
SIAM J.Numer.Anal.,v. 14, 1977,pp. 1006-1021.

2. J. BOND & J. R. CASH, "A block method for the numerical integration of stiff systems of ordinary
differential equations," BIT, v. 19, 1979, pp. 429-447.

3. J. C. BUTCHER, " Coefficients for the study of Runge-Kutta integration processes," J. Austral. Math.
Soc., v. 3, 1963, pp. 185-201.

4. J. C. BUTCHER, K. BURRAGE & F. H. CHIPMAN, STRIDE: Stable Runge-Kutta Integrator for
Differential Equations, Report No. 20, Dept. of Mathematics, University of Auckland, New Zealand,
1979.

5. J. R. CASH, "Diagonally implicit Runge-Kutta formulae with error estimates," J. Inst. Math. Appl.,
v. 24, 1979, pp. 293-301.

206 J. R. CASH

6. J. R. CASH, Stable Recursions, with Application to the Numerical Solution of Stiff Systems, Academic
Press, London and New York, 1979.

7. M. CROUZIEUX, Sur l'Approximation des equations Differentielles Operationnelles Lineaires par des
Methodes de Runge-Kutta, Ph.D. thesis, University of Paris, 1975.

8. C. W. GEAR, "Runge-Kutta starters for multistep methods," ACM Trans. Math. Software, v. 6,
1980, pp. 263-279.

9. A. C. HINDMARSH, GEAR: Ordinary Differential Equation System Solver, Rep. UCID-30001, Rev. 3,
Lawrence Livermore Laboratory, Livermore, Calif., 1974.

10. K. R. JACKSON & R. SACKs-DAVIS, "An alternative implementation of variable step-size multistep
formulas for stiff ODEs," ACM Trans. Math. Software, v. 6, 1980, pp. 295-318.

11. J. D. LAMBERT. Private communication, 1980.
12. B. LINDBERG, "Characterization of optimal stepsize sequences for methods for stiff differential

equations," SIAMJ. Numer. Anal., v. 14, 1977, pp. 859-887.
13. W. E. MILNE, Numerical Solution of Differential Equations, Wiley, New York, 1953.
14. S. P. N0RSETT, Semi-Explicit Runge-Kutta Methods, Mathematics and Computation, No. 6,

University of Trondheim, 1974.
15. A. PROTHERO & A. ROBINSON, "On the stability and accuracy of one-step methods for solving stiff

systems of ordinary differential equations," Math. Comp., v. 28, 1974, pp. 145-162.
16. L. F. SHAMPINE & H. A. WATTS, "A-stable implicit one-step methods," BIT, v. 12, 1972, pp.

252-266.
17. J. WILLIAMS & F. DE HOOG, "A class of A-stable advanced multistep methods," Math. Comp., v. 28,

1974, pp. 163-177.

	Cit r136_c139:

